A fim de obter a automação completa da análise, inclusive EDS, começamos a desenvolver, em linguagem Delphi, um *software* que substitua o IMQuant/Auto, ligando o AutoStage (automatizador) ao IMQuant (analisador de imagens) e ao IMQuant/X (analisador químico EDS). Estas ligações com os outros programas, como no caso do IMQuant/Auto, serão feitas através de *links* DDE (troca dinâmica de dados).

Para que programas distintos estabeleçam um *link* DDE, são necessários parâmetros definidos pelos criadores dos mesmos, assim, com o apoio da representação brasileira, estamos intercedendo junto à Oxford inglesa, a desenvolvedora do pacote ISIS Suite 3, para que nos forneça tais parâmetros.

BIBLIOGRAFIA

1. PETRUK, W., Measurement of mineral liberation in connection with mineral beneficiation. In: PETRUK, W., HAGNI, R.D., PIGNOLET-BRANDOM, S. et al. (eds.), Process Mineralogy IX (TMS, 1990) p. 31-36.

Recuperação de Finos de Cromita por Separação Magnética e Agregação Hidrofóbica

Vivian Palmieri
Bolsista de Iniciação Científica, Engenharia Química, UFRJ
Fernando Freitas Lins
Orientador, Engenheiro Metalúrgico, D. Sc.
Antonieta Middea
Co-orientadora, Engenheira Química

RESUMO

A agregação seletiva de finos de cromita, favorecida por surfatantes, foi estudada paralelamente a um processo de separação magnética a úmido, utilizando-se uma adaptação do Separador Frantz convencional. Obteve-se uma recuperação de 75% e aumento no teor de Cr₂O₃ de 8 para 20%. As melhores condições de agregação hidrofóbica (pH, agitação, concentração de reagentes) foram estudadas e o estado de agregação determinado por MEV e Sedigraph.

1. INTRODUÇÃO

Atualmente existe um grande interesse na recuperação de finos e ultrafinos fracamente magnéticos (normalmente <10µm), os quais são perdidos nas matrizes dos separadores magnéticos industriais. Um processo promissor seria a agregação seletiva de partículas finas sob condições físico-químicas adequadas. Como a formação de agregados aumenta as dimensões efetivas das partículas e/ou a resposta magnética das mesmas, as possibilidades de concentrá-las tornam-se mais favoráveis (1-3).

Uma forma de concentrar esses finos seria por separação magnética a úmido de alta intensidade, precedida, ou não, por adsorção seletiva de surfatantes específicos à superfície da partícula, visando uma agregação hidrofóbica.

No que se refere à adsorção seletiva de surfatantes, sabe-se que as partículas hidrofóbicas, finamente divididas em suspensão, podem

agregar-se quando submetidas à uma agitação de intensidade suficiente para vencer a barreira de energia (repulsão eletrostática) que as separam, permitindo assim que se mantenham unidas por interação hidrofóbica (4).

2. OBJETIVO

Este projeto apresenta uma pesquisa sobre separação magnética de finos e ultrafinos, fracamente magnéticos, que são perdidos nos rejeitos de concentração gravítica e concentração magnética. Prevê o estudo de rejeitos finos contendo cromita e rejeitos finos de concentração magnética de minérios de ferro. O trabalho ora apresentado tem por objetivo recuperar finos de cromita por separação magnética, e investigar o efeito de surfatantes na agregação hidrofóbica seletiva dos minerais contendo óxido de cromo.

3. METODOLOGIA

Nos ensaios de separação magnética utilizou-se uma amostra de rejeito de cromita, proveniente da usina de Pedrinhas-FERBASA, com teores totais de Cr₂O₃ e SiO₂ de 8% e 30%, respectivamente. Foi utilizada uma fração abaixo de 37µm para o estudo do efeito da intensidade de campo magnético sobre a recuperação de finos de cromita presentes nesse rejeito.

Nos ensaios de agregação hidrofóbica utilizou-se uma cromita natural com teor de Cr₂O₃ de 44% na fração abaixo de 5μm. Os surfatantes comerciais utilizados nesses ensaios foram: i) *KE-883B* (mistura de aniônicos e não iônicos); ii) *SCO-40* (alquil sulfossuccinato) e iii) *tail oil* (mistura de ácidos graxos). Como reguladores de pH, utilizou-se NaOH e HCl de grau analítico. A água foi destilada e deionizada.

Efeito da Intensidade de Campo Magnético sobre a Recuperação das Partículas de Cromita

O efeito da intensidade de campo magnético sobre a recuperação dos finos de cromita, presentes no rejeito, foi investigado através do Separador Magnético Isodinâmico Frantz (SMIF), modificado para um sistema a úmido (5). Utilizou-se uma suspensão de 7,0 g de amostra em 300 mL de água destilada, sendo o valor de pH da mesma 9,0. A suspensão foi constantemente homogeneizada através de um leve jato de ar. O valor de ângulo de inclinação da calha foi fixado em 10 graus, após ensaios preliminares, e a intensidade de campo magnético foi variada de 2 kGauss a 17 kGauss. Os produtos magnéticos e não-magnéticos foram recolhidos, secos, pesados e enviados à análise química para determinação dos teores de Cr₂O₃ e SiO₂.

3.2 Ensaios de Agregação Hidrofóbica no PDA-2000

A eficiência dos surfatantes na hidrofobização da cromita foi verificada através do *Photometric Dispersion Analyser (PDA-2000)*. O método consiste na análise da concentração de uma suspensão a partir da comparação entre um feixe de luz incidido sobre ela e o transmitido na saída de um fotodetector. Esta diferença é convertida em voltagem e lida como valores de razão (rms/dc), onde rms corresponde à concentração e ao tamanho das partículas suspensas, e dc à intensidade de luz transmitida pela suspensão (Figura 1). Um aumento ou uma redução nesse valor indica, qualitativamente, um estado de agregação ou dispersão, respectivamente.

A suspensão de 1,0 g de cromita natural em 300 mL de água foi mantida por 10 min em ultra-som. A vazão no *PDA-2000* foi de 2,5 mL/min. O condicionamento com os surfatantes, em diferentes concentrações, foi de 5 min a um valor de pH 3,0, valor inferior ao p.c.z. da cromita, medido experimentalmente em um medidor de mobilidade eletroforética Mark II da Rank Brothers (valor de pH 4,7). A agitação foi realizada através de um agitador IKA-mod.RW20 a uma velocidade de 700 rpm.

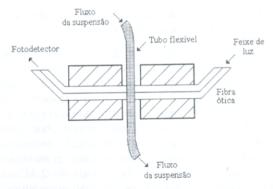


Figura 1 - Esquema de funcionamento do PDA-2000.

4. RESULTADOS E DISCUSSÃO

4.1 Efeito da Intensidade de Campo Magnético sobre a Recuperação das Partículas de Cromita

Obteve-se uma recuperação de Cr₂O₃ em torno de 75% em toda a faixa de campo magnético estudadas e um incremento de 8 para 20% no teor de Cr₂O₃ (teor desejado de 35%), permanecendo constante com a variação do campo. A Figura 2 apresenta uma comparação entre os teores de Cr₂O₃ e SiO₂ na alimentação e no produto magnético.

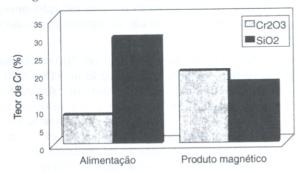


Figura 2 - Comparação entre os teores de Cr₂O₃ e SiO₂ na alimentação e no produto magnético

4.2 Agregação Hidrofóbica no Photometric Dispersion Analyser

Conforme observado na Figura 3, os resultados dos ensaios no *PDA-2000* revelaram que os surfatantes *KE-883B* e *SCO-40* são mais eficientes que o *tail oil* na agregação das partículas de cromita. Verifica-se que o aumento das concentrações de *KE-883B* e *SCO-40* promove um aumento nos valores de razão, indicando um estado de agregação das partículas. Por outro lado, esse efeito não foi evidenciado na presença de *tail oil*, e uma possível explicação seria a baixa solubilidade do mesmo neste valor de pH.

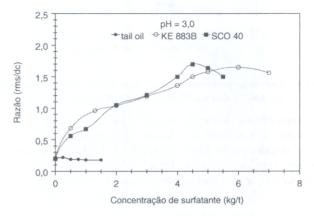


Figura 3 - Efeito da concentração de surfatantes na agregação hidrofóbica de finos de cromita natural

Confirmou-se a formação de agregados através da análise granulométrica dos finos de cromita, realizada em Sedigraph, antes e depois da adição dos surfatantes *KE-883B* e *SCO-40* em valor de pH 3,0 (mesmas condições dos ensaios no *PDA-2000*). Os resultados estão apresentados na Figura 4, onde observa-se um aumento no tamanho efetivo das partículas após a adição dos surfatantes.

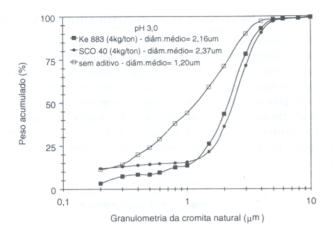


Figura 4 - Análise granulométrica dos finos de cromita antes e depois da adição dos surfatantes KE-883B e SCO-40

Os agregados de finos de cromita também foram observados através do microscópio eletrônico de varredura com detector de energia dispersiva de raios X (MEV). A formação de agregados pode ser comparada pelas imagens dos finos obtidas antes e depois da adição dos surfatantes através da Figura 5.

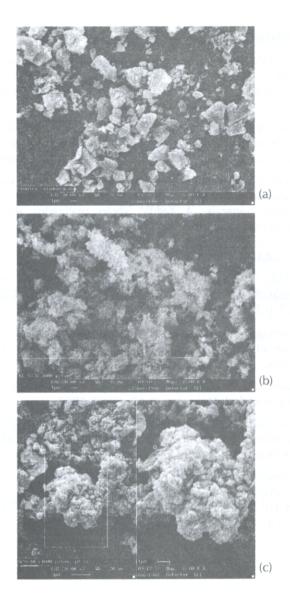


Figura 5 - Imagens obtidas ao MEV (8000 vezes) dos finos de cromita antes (a) e depois da adição do surfatantes *KE-883B* (b) e SCO-40 (c) em valor de pH 3,0

5. CONSIDERAÇÕES GERAIS

A concentração de finos de cromita através da adaptação realizada no SMIF para um sistema a úmido indicou a possibilidade de recuperação de 75% e aumento do teor de Cr₂O₃ no produto magnético de 8 para 20%.

A adição dos surfatantes comerciais *KE-883B* e *SCO-40* à uma suspensão de partículas de cromita natural, em valor de pH 3,0, promoveu a hidrofobização dos finos, favorecendo sua agregação.

Na sequência do trabalho serão utilizadas as melhores condições de agregação hidrofóbica seletiva, visando manter em dispersão os demais minerais. A seguir, serão realizados ensaios de separação magnética no SMIF a úmido.

BIBLIOGRAFIA

- 1. WANG, Y., Forssberg, E. Recent activities in magnetic separation in Sweden. Magnetic and Electrical Separation, v.7, p.1-18, 1995.
- 2. Parsonage, P. Principles of mineral separation by selective magnetic coating. Int. J. of Min. Proces., v.24, p. 269-293, 1988.
- 3. Russell, A. Magnetic separation an ever more exacting science". Ind. Min., pp. 39-47, march 1992.
- 4. Somasundaran, P. Principles of flocculation, dispersion and selective flocculation. In: SOMASUNDARAN, P. (ed.). Fines Particles Processing. 1980. (AIME, Ch. 48).
- 5. Parsonage, P. Extension of range and sensitivity of laboratory isodynamic magnetic separator to fine sizes. Trans. Inst. Min. Metall., Sect. C. Min. Process. Extr. Metall., v.88, C.1, 82-86, 1979.

Estudo das Propriedades Eletrocinéticas de Partículas de Ouro

Flávia Neves David Bolsista de Iniciação Científica, Engenharia Química, UFRJ Marisa B. M. Monte Orientadora, Engenheira Química, M. Sc.

RESUMO

As propriedades eletrocinéticas das partículas de ouro foram avaliadas através do efeito da concentração de eletrólitos inorgânicos e do surfatante amil xantato de potássio (AXP) no potencial zeta das partículas de ouro. Verificaram-se o comportamento indiferente dos íons monovalentes, o controle fundamental que os íons H⁺ e OH⁻ exercem no potencial dessas partículas, assim como a afinidade química do íon xantato pela superfície deste metal.

1. INTRODUÇÃO

O entendimento dos mecanismos responsáveis pela geração de carga na interface sólido/solução é a base para o desenvolvimento tecnológico de muitos processos, que dependem das características físico-químicas da superfície dos sólidos (1).

A flotação é uma importante aplicação da físico-química de superfícies, pois os minerais podem ser separados seletivamente de uma polpa de minério moído, contendo, entre outros, surfatantes que ajustam e controlam as propriedades superficiais desses sólidos para uma separação efetiva. Ou seja, o surfatante é adsorvido seletivamente na superfície do sólido, recobrindo-a com um filme hidrofóbico (2). Por outro lado, a adição de outros reagentes específicos e/ou a presença de determinadas espécies minerais dissolvidas na polpa podem exercer uma ação depressora ou ativadora na superfície mineral, inibindo a ação posterior do surfatante (coletor). Na etapa seguinte, por dispersão de uma fase gasosa na célula de flotação, as partículas