TEORES DE MERCÚRIO EM ÁGUAS, SOLOS E SEDIMENTOS FLUVIAIS EM ÁREA IMPACTADA POR MINERAÇÃO EM PARACATU (MG)

Stephanie Senderowitz

Aluna de Graduação da Geologia, 9º período, UFRJ Período PIBIC/CETEM: julho de 2010 a julho de 2011, tetewitz@hotmail.com

Ricardo Gonçalves Cesar Orientador, Geógrafo, M.Sc. rcesar@cetem.gov.br

1. INTRODUÇÃO

O mercúrio (Hg) é um metal de elevada toxicidade à saúde humana e à biota. Seu comportamento biogeoquímico depende das propriedades física, química e mineralógica do compartimento ambiental estudado, e seu entendimento é de suma importância ao estabelecimento de medidas de saúde pública e de controle ambiental. Paracatu (MG) sofre com impactos de frentes de lavra metálicas, tais como ouro, zinco e cobre. Recentemente, o CETEM iniciou a investigação de possíveis impactos sobre a saúde humana decorrentes da exposição por metais tóxicos. Há registros históricos do emprego de Hg metálico em antigos garimpos, porém o ouro (de gênese primária) é atualmente explorado por empresas especializadas. As reservas de ouro (os menores teores do mundo - <0,4g/t Au) demandam pela geração de alta quantidade de rejeitos.

2. OBJETIVOS

Avaliar dos teores de Hg em águas, solos e sedimentos fluviais em Paracatu (MG), como suporte ao estabelecimento futuro de políticas públicas e de controle da poluição.

3. METODOLOGIA

As amostras de águas fluviais (23) foram coletadas na lâmina superficial da drenagem (Figura 1). Foram armazenadas em recipientes de polietileno, sendo acidificadas com HNO₃. As amostras de solo (17) e de sedimentos fluviais (17) foram coletadas superficialmente (20cm) (Figura 1). Os solos foram amostrados na vizinhança das drenagens. Em laboratório, as amostras foram secas à temperatura ambiente e desagregadas. Após essa etapa, foram fracionadas utilizando peneiras de nylon de 1,7mm (10#) e 0,075mm (200#). Dessa forma foram geradas duas frações granulométricas, além da amostra *in natura* (< 1,7mm): 1,7mm-0,075mm (fração arenosa) e <0,075mm (fração silto-argilosa).

O pH, condutividade elétrica, oxigênio dissolvido, sólidos dissolvidos e temperatura em amostras de água foram determinados em campo com uma Multi Sonda. Os valores obtidos foram comparados com a resolução 357 do CONAMA (2005).

O pH dos solos e sedimentos foi determinado por meio de eletrodo combinado imerso em uma suspensão solo líquido na proporção 1:2,5 (água). A caracterização mineralógica foi executada utilizando a técnica de difração de Raios-X. A determinação quantitativa de mercúrio total (HgT) foi realizada com o equipamento LUMEX, uma absorção atômica acoplada a uma câmara de pirólise. Os valores obtidos foram comparados com CETESB (2005) e a Resolução 344 do CONAMA (2004), para qualidade de solos e sedimentos de água doce, respectivamente.

A avaliação da fixação preferencial de Hg entre as frações granulométricas estudadas foi realizada através do cálculo do Índice Geoquímico de Distribuição Granulométrica (IGDG) (Equação 1 - Santos et al. 2002). A avaliação quantitativa do grau de poluição por metais pesados nos sedimentos fluviais foi realizada através do cálculo do Índice de Geoacumulação (IGEO) (Equação 2 - Müller, 1979). O IGEO permite a obtenção de 7 classes de poluição, com o mínimo na classe 0 e o máximo na classe 6.

$$IGDG = C_{(fino)} \times 100 / C_{(fino)} + C_{(grosseira)}$$
Equação (1)

Onde: $C_{(fino)}$ = concentração do metal na fração fina; $C_{(grosseira)}$ = concentração do metal na fração grosseira. IGDG > 60% = fixação preferencial para fração fina; IGDG entre 60-40%: sem fixação preferencial; IGDG < 40%: fixação para fração grosseira.

$$IGEO = Log_2 Me / 1,5 x Me_{back}$$
 Equação (2)

Onde: Me = teor do metal em campo; Me_{back} = background no folhelho médio (40ng/g).

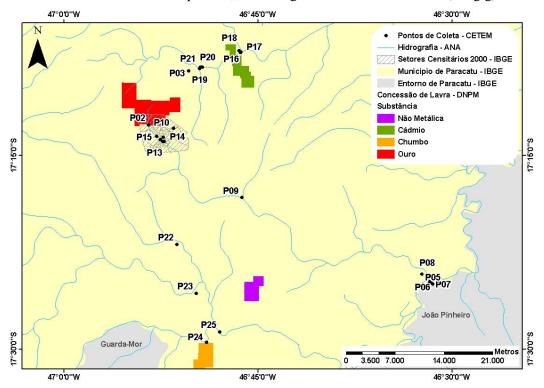


Figura 1: Localização geográfica dos pontos de coleta em Paracatu (MG).

4. RESULTADOS E DISCUSSÃO

A quantificação do Hg em águas fluviais apresentou valores baixos, em sua maior parte abaixo do limite de detecção do equipamento (0,01 $\mu g/L$). As concentrações obtidas estão em conformidade com o valor estipulado pela OMS e da Portaria 518 do Ministério da Saúde (10 $\mu g/L$). A determinação do pH em águas fluviais indicou valores que abrangem a faixa de neutralidade (6,5 – 8) e, dessa forma, pouco interferem no incremento da biodisponibilidade de metais. A determinação da condutividade elétrica apontou valores entre 16 e 462 μ S.cm. Cerca de 60% dos pontos de coleta ultrapassam o valor estipulado pelo CONAMA (100 μ S.cm), indicando a ocorrência de drenagens degradadas. A origem desses contaminantes pode estar associada não necessariamente aos impactos oriundos da mineração, mas também a áreas que sofrem com o despejo inadequado de esgoto doméstico (como, p. ex., o ponto 12). A quantificação do oxigênio dissolvido apresentou valores entre 0,5 e 9,86 mg/L. Cerca de 40% desses valores não estão em conformidade com a concentração estabelecida pelo CONAMA (6 mg/L), indicando a ocorrência de ambientes degradados.

O pH dos solos e sedimentos ficou na faixa da neutralidade (em geral, entre 5 e 7), sendo os solos ligeiramente mais ácidos. Ambos apresentaram texturas predominantemente arenosas, sendo os solos mais grosseiros. A caracterização da fração silto-argilosa dos materiais revelou a predominância de: caulinita, quartzo, gibbsita, muscovita, hematita e clorita. A abundância de caulinita, gibbsita e hematita estão associadas a materiais que sofreram intenso intemperismo químico. No caso da clorita, é mais provável que sua ocorrência esteja relacionada às rochas cujo metamorfismo atingiu à zona da clorita.

A quantificação do Hg em sedimentos *in natura* ficou abaixo de 170 ng/g, "Nível 1" da Resolução 344 do CONAMA (2004). Os valores de IGEO permaneceram entre as classes 0 e 2, predominando a classe 0, i. e., materiais praticamente não poluídos. Os valores máximos de IGEO estiveram localizados nos pontos diretamente influenciados pela mineração (pontos SD-01 e SD-02 – Córrego Rico). No caso do ponto SD-13, trata-se de um local impactado por esgoto doméstico. A determinação do Hg em distintas frações granulométricas indicou que as frações mais finas tinham concentrações maiores do que as grosseiras (com IGDGs, em geral, acima de 60%). Certamente outros atributos do sedimento (textura, matéria orgânica, oxihidróxidos de ferro e alumínio, argilominerais, etc.) também papel importante nesses processos.

A quantificação do Hg em solos abaixo de 50 ng/g, valor de referência de qualidade estabelecido pela CETESB (2005) (background do estado de SP). Contudo, as concentrações obtidas são menores do que o valor de prevenção ambiental (500 ng/g). Destacam-se os mais elevados teores obtidos para os pontos SL-02 e SL-15 (área afetada pela mineração), bem como para o ponto SL-11, área urbanizada e que conta a abundância de solos construídos, que podem conter remanescentes de Hg metálico. Os IGDGs para solos indicaram, em sua maior parte, a ausência de fixação preferencial entre as frações fina e grosseira (IGDGs entre 40 e 60%), em contraste com os sedimentos. Certamente, diferenças na mineralogia desses materiais (sobretudo no que diz respeito aos oxi-hidróxidos de ferro) devem estar afetando a fixação do metal. A mineralogia da fração arenosa deverá ser detalhada em trabalhos futuros.

Tabela 1 – Teores de mercúrio em sedimentos fluviais, e valores de IGDG e IGEO. N/D = dado indisponível.

Pontos de coleta	Hg (ng/g)			ICDC (0/)	Classe de
	<0,075mm	1,7-0,075mm	< 1,7 mm	IGDG (%)	IGEO
SD-01	223	24,5	42,04	90,10	2
SD-02	104	18,5	20,43	84,90	1
SD-03	3,9	8,65	5,45	31,08	0
SD-05	33	35	34,84	48,53	0
SD-06	10	3	5,67	76,92	0
SD-07	9,25	0,5	0,57	94,87	0
SD-08	51,5	51,5	51,50	50,00	0
SD-09	54,5	11,2	13,70	82,95	0
SD-10	15,5	N/D	15,50	N/D	0
SD-11	48	11	12,33	81,36	0
SD-13	115	21	24,12	84,56	1
SD-16	10,3	9,35	9,68	52,42	0
SD-17	34	6,4	8,22	84,16	0
SD-18	49,5	3,65	4,77	93,13	0
SD-19	44,5	34,5	34,62	56,33	0

Tabela 2 – Teores de mercúrio em solos superficiais, e valores de IGDG e IGEO. * = acima do valor de referência de CETESB (2005).

Dente de celete		ICDC (0/)			
Pontos de coleta	<0,075mm	1,7-0,075mm	< 1,7 mm	IGDG (%)	
SL-01	10,95	11,5	11,40	48,78	
SL-02	98,5	69,5	74,86*	58,63	
SL-03	17,5	10,8	11,99	61,84	
SL-05	12	10,5	10,66	53,33	
SL-08	16	19	18,54	45,71	
SL-10	10,45	9,65	9,70	51,99	
SL-11	358,5	319,5	327,43*	52,88	
SL-13	36	23,5	25,92	60,50	
SL-09	30	13	15,24	69,77	
SL-15	341,5	253	261,24*	57,44	
SL-16	10,05	16	15,12	38,58	
SL-17	16,6	11,5	12,99	59,07	
SL-19	9,5	7,4	7,56	56,21	
SL-22	5,4	7,25	6,97	42,69	
SL-23	6,85	4,7	5,17	59,31	
SL-24	19,5	14	14,96	58,21	
SL-25	25,5	15,5	16,21	62,20	

5. AGRADECIMENTOS

Gostaria de agradecer ao Geógrafo Ricardo Sierpe pela confecção do mapa de amostragem; À Dra. Zuleica Castilhos e ao meu orientador Ricardo Cesar pelo empenho, incentivo e oportunidade neste projeto.

6. REFERÊNCIAS BIBLIOGRÁFICAS

CONAMA. 2004. **Resolução 344**. Disponível em: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=445. Acesso em 3 mar. 2011.

MÜLLER, G. Schwermetalle in den sediments des Rheins. Veranderungen Seite. Umschau, 78: 778-783, 1979.

SANTOS, L.; MELO-JUNIOR, G.; SEGUNDO, J. Concentração de Metais Pesados em Frações Granulométricas de Sedimentos de Fundo do Rio Pitimbu, Região Sul da Grande Natal (RN): Implicações para Levantamentos Ambientais. Revista de Geologia (Fortaleza), Fortaleza-CE, v. 15, p. 01-08, 2002.

CETESB. 2005. **Valores Orientadores para Solos e Águas Subterrâneas no Estado de São Paulo**. http://www.cetesb.sp.gov.br/Solo/relatorios/tabela_valores_2005.pdf>. Acesso em: Março/2008.