CONCENTRAÇÃO DE PENDLANDITA POR MEIO DE FLOTAÇÃO CONVENCIONAL EM BANCADA

Vinicius Gomes Ribeiro

Aluno de Graduação de Engenharia Química, 6° período, UFRJ
Período PIBIC/CETEM: agosto de 2010 a agosto de 2011, vribeiro@cetem.gov.br

Hudson Jean Bianquini Couto

Orientador, Eng. Químico, D.Sc. hcouto@cetem.gov.br

1. INTRODUÇÃO

Atualmente, a flotação por ar induzido é uma das técnicas mais utilizada para a concentração de minérios e vem sendo largamente utilizada, em função de sua melhor eficiência na obtenção dos concentrados, comparado com outras técnicas.

O que torna esta técnica mais eficaz que as outras é sua versatilidade, pois outras técnicas baseiam-se apenas nas diferenças das propriedades físicas entre os minerais. A flotação é um processo físico-químico que possui a vantagem de manipular as características superficiais dos minerais.

Neste contexto, é possível aplicar esta técnica para todos os minerais, já que cada um possui uma característica superficial especifica.

2. OBJETIVOS

O presente trabalho teve o objetivo de verificar e a eficiência da flotação convencional,em bancada, de um rejeito de níquel de baixo teor.

3. METODOLOGIA

1.1 Preparação da amostra

A amostra contendo cerca de 5,00 kg de rejeito de níquel foi homogeneizada e quarteada em alíquotas de 400 g de material, visando ajuste posterior da porcentagem de sólidos, na cuba de flotação, entre 20 e 30%. Estas alíquotas foram classificadas, por peneiramento via úmida, a fim de estudar a flotação das frações passantes e retidas em 20 µm (635 *Mesh*) separadamente.

A flotação da fração acima de 20 µm visa a concentração de sulfetos (pirrotita e parte da pentlandita liberada) a da fração abaixo de 20 µm, deseja-se concentrar a maior parte da pentlandita liberada, visando testes futuros de flotação em coluna.

1.2 Análise Química

As amostras foram quarteadas para retirada de alíquotas de, aproximadamente, 20 g de material que foram enviadas para análise química para determinação de teores dos seguintes elementos: Ni, Cu, Co, Fe, MgO, Mn, S, CaO e SiO₂.

1.3 Ensaios na Célula de Flotação em Bancada

Os ensaios foram feitos na célula de flotação da marca DENVER modelo D12 equipada com inversor de frequência e utilizando-se uma cuba com volume de 1,5 litros.

As condições utilizadas estão descritas abaixo:

- Rotação: 1200 rpm;
- Porcentagens de sólidos na alimentação de 20%;
- Tempo de condicionamento do depressor: 5,0 minutos;

- Tempo de condicionamento do coletor: 2,0 minutos;
- pH da flotação: 6,5, regulado em cada estágio.

Como reagentes foram utilizados:

- Coletores: Amil xantato de potássio 5%(p/v) (AXK); Hostaflot 1%(p/v) (Clariant®) mistura de mercaptobenzotiazol e ditiofosfato;
- Depressores: Carboximetil celulose 1%(p/v)(CMC);
- Espumante: metil isobutil carbinol (MIBC);
- Reguladores de pH: soluções de H₂SO₄10%(p/v) e NaOH 20%(p/v).

As condições utilizadas nos ensaios encontram-se descritos na Tabela 1 abaixo:

Ensaio % solidos Coletor Depressor Amostra deslamado por 1 28 AXK (100 g/t) CMC (200 g/t) decantação 2 28 AXK (100 g/t) CMC (200 g/t) $+20 \mu m$ 3 $+20~\mu m$ 20 Hostaflot (100 g/t) CMC (200 g/t) 4 20 AXK (100 g/t) CMC (200 g/t) $-20 \mu m$ AXK (150 g/t) 5 28 CMC (200 g/t) $+20 \mu m$ e Hostaflot (150 g/t) AXK (150 g/t) 6 20 CMC (400 g/t) $-20 \mu m$ e Hostaflot (150 g/t)

Tabela 1. Condições empregadas nos ensaios de flotação do rejeito de Ni

4. RESULTADOS E DISCUSSÃO

1.4 Caracterização química da amostra

A amostra de rejeito de níquel estudada apresentou a composição ilustrada abaixo na Tabela 2.

A amostra de rejeito estudada é constituída essencialmente por silicatos e óxidos de ferro e magnésio, possuindo cerca de 0,32% de níquel, proveniente, principalmente, dos minerais pentlandita e pirrotita, de acordo com o difratograga de raios-X realizada da amostra.

Tabela 2. Análise química da amostra de estudo

Teores (% mássica)											
Ni	Cu	Co	Fe	MgO	S	CaO	SiO ₂				
0,316	0,030	0,0097	19,13	13,65	1,960	6,393	52,070				

Na Tabela 3 são apresentados os resultados provenientes da flotação em bancada do rejeito de níquel, conforme condições experimentais apresentadas na Tabela 1.

Tabela 3. Resultados da flotação para os ensaios realizados.

Ensaio	A1: (0/ NI:)	Rejeito		Concentrado		D	DM
	Alim. (% Ni)	m (g)	% Ni	m (g)	% Ni	R _{mássica}	RM
1	0,316	493,8	0,140	59,3	1,027	10,7	34,8
2	0,316	517,81	0,136	50,1	1,196	8,8	33,4
3	0,316	551,59	0,387	6,5	0,387	1,2	1,4
4	0,316	389,83	0,418	19,3	0,418	4,7	6,2
5	0,316	480,66	0,121	72,8	1,019	13,1	42,4
6	0,316	352,43	0,239	88,9	0,432	20,2	27,5

R_{mássica} é a recuperação em massa de concentrado

Os parâmetros adotados para avaliação de eficiência foram, principalmente, os teores de níquel em massa (%Ni) e de recuperação metalúrgica de níquel no concentrado (RM). Os valores da recuperação metalúrgica (1) e mássica (2) foram obtidos pelas equações abaixo:

$$RM(\%) = \left(\frac{\% Ni_{conc} \cdot m_{conc}}{\% Ni_{a \text{ lim}} \cdot m_{a \text{ lim}}}\right) \cdot 100 \tag{1}$$

$$R_{m\acute{a}ssica}(\%) = \frac{m_{conc}}{m_{a \, lim}} \cdot 100 \tag{2}$$

De acordo com a Tabela 3 nota-se que os melhores resultados para a concentração de níquel foram nos ensaios 1,2 e 5, os quais estão com a granulometria, em grande parte, acima de 20 um.

Para as amostras com granulometria abaixo de $20~\mu m$ (4 e 6) percebeu-se que a flotação não foi muito eficiente. Isso se deve, provavelmente, ao fato de amostras com partículas muito finas consumirem muito reagente ao mesmo tempo em que a seletividade é prejudicada por conta do arraste hidráulico. Por este motivo, a deslamagem é uma etapa crucial antes da flotação.

O melhor resultado obtido foi para o ensaio 5 com a mistura dos coletores(AKX e Hostaflot), o qual teve uma recuperação metalúrgica de 42,4% e tendo o teor de níquel do concentrado com, aproximadamente, quatro vezes que a da amostra alimentada.

Em relação aos coletores utilizados, o AKX foi o que teve melhor desempenho, o que pode ser constatado no ensaio 3 em que foi utilizado o Hostaflot sozinho, obtendo-se baixo rendimento. Por fim, deve-se realizar mais estudos de flotação em bancada do rejeito de níquel para otimização do processo, visando ensaios contínuos de flotação em coluna no futuro.

5. AGRADECIMENTOS

Gostaria de agradecer inicialmente ao CNPq pela concessão da Bolsa de Iniciação Científica – BIC por intermédio do programa PIBIC/CETEM, ao meu orientador Hudson Jean Bianquini Couto, a minha co-orientadora Silvia Cristina Alves França e aos profissionais do CETEM que contribuíram para este trabalho.

6. REFERÊNCIAS BIBLIOGRÁFICAS

CHAVES, A.P.; FILHO, L.S.L.F.; BRAGA, P.F.A. Flotação. In: LUZ, A.B; SAMPAIO, J.A.; FRANÇA, S.C.A. (Eds). Tratamento de Minérios. 5 ed. Rio de Janeiro, RJ, Brasil: Centro de Tecnologia Mineral, 2010, p.465-512.

BALTAR, C.A.M. **Flotação no Tratamento de Minérios**. 1.ed., Recife, BRASIL: Departamento de Engenharia de Minas/UFPE, 2008. 201p.

NUNES, D. G., FRANCA, S. C. A., COUTO, H. J. B., Aplicação da flotação em coluna na recuperação de finos da indústria mineral In: JORNADA DE INICIAÇÃO CIENTÍFICA DO CETEM, 2010, Rio de Janeiro. **Anais do XVII Jornada de Iniciação Científica do CETEM**, 2010.

SAMPAIO, J.A., LUZ, A.B., LINS, F. F. Usinas de Beneficiamento de Minérios do Brasil, CETEM/MCT, 2001.