LIXIVIAÇÃO DE MONAZITA VISANDO A EXTRAÇÃO DE ELEMENTOS DE TERRAS RARAS

Rafael Henrique Costa Peixoto

Aluno de Graduação em Química (Bacharelado e Licenciatura) 5° período, Fundação Técnico-Educacional Souza Marques — FTSM Período PIBIC/CETEM: setembro de 2010 a julho de 2012 rpeixoto@cetem.gov.br

Fábio Henrique Silva dos Santos

Orientador, Químico, Dr. fhsantos@cetem.gov.br

1. INTRODUÇÃO

A composição do conjunto de elementos inclusos no grupo denominado "Terras Raras" é causa de certa divergência dentre os inúmeros artigos sobre o tema. Para o desenvolvimento deste trabalho foi adotada a classificação deste grupo de elementos que compreende inicialmente os elementos cujos números atômicos estão situados entre o lantânio (La) e o lutécio (Lu) — com exceção do promécio (Pm) — além do Ítrio (Y); totalizando, portanto, 15 elementos (HENDERSON, 1996). Dentre os minerais que apresentam esses elementos se encontra a monazita, que é caracterizado quimicamente por fosfatos de terras raras, sendo os elementos lantânio e cério os que se encontram em maior abundância na matriz mineral. Além desses elementos, a monazita é composta ainda por elementos radioativos como o tório e o urânio e por quantidades moderadas de ferro, alumínio, cálcio, magnésio, sílica, titânio e zircônio (ZINI, 2010). Entre as possíveis aplicações tecnológicas das terras raras podemos citar a produção de varias ligas (Metalurgia), de catalisadores (Petróleo e Gás), a componentes eletrônicos (Tecnologia da Informação); dentre outros (LOUREIRO, 1994).

2. OBJETIVOS

Este trabalho avalia a extração de terras raras presentes em um mineral monazítico. Os ensaios foram conduzidos através de uma rota hidrometalúrgica composta de duas etapas: a primeira trata da abertura do minério via utilização de uma solução alcalina, a segunda tem como objetivo liberar os metais para a solução através de ataque ácido dos hidróxidos insolúveis gerados na etapa anterior.

3. METODOLOGIA

A amostra utilizada neste trabalho é um minério de monazita previamente cominuído de origem nacional. Para analisar a composição química da amostra original foi utilizada a técnica de fluorescência de raios x por dispersão de energia. O equipamento utilizado foi o modelo EDX 800 HS da marca Shimadzu em colaboração com o Instituto de Engenharia Nuclear. A análise da concentração das espécies nas soluções resultantes das etapas de lixiviação foi efetuada através de espectrometria de emissão ótica com plasma induzido.

3.1 Caracterização da Amostra

Os resultados obtidos sobre o teor de elementos de terras raras presente na amostra são apresentados na Tabela 1. Observa-se que a amostra utilizada neste trabalho apresenta baixos teores de elementos das terras raras, em comparação com os teores publicados na literatura.

Provavelmente o fato decorre da procedência do minério, haja vista que os elementos de terras raras podem apresentar teores variados dependendo da origem do minério (ROSENTAL, 2008).

Tabela 1 – Teor dos elementos	presentes na amostra em estudo.
-------------------------------	---------------------------------

Elemento	Teor (%)
Cério	20,9
Lantânio	10,2
Neodímio	12,5
Outras terras raras ^(*)	6,6
Fosfato	33,0
Outros elementos	16,8

^{(*) &}quot;Outras terras raras" refere-se aos elementos Sm, Pr e Y; cujos teores são inferiores a 3%.

4. RESULTADOS E DISCUSSÃO

4.1 Lixiviação ácida com pré-tratamento alcalino

Para avaliar a extração dos elementos de terras raras sob a ação de uma solução saturada de hidróxido de sódio, foram realizados testes preliminares. A amostra após sofrer tratamento alcalino tem a fase sólida separada do sobrenadante por filtração. O material sólido obtido na lixiviação alcalina sofreu secagem em estufa (temperatura entre 50 e 60°C). Após secagem do filtrado a lixiviação ácida é efetuada.

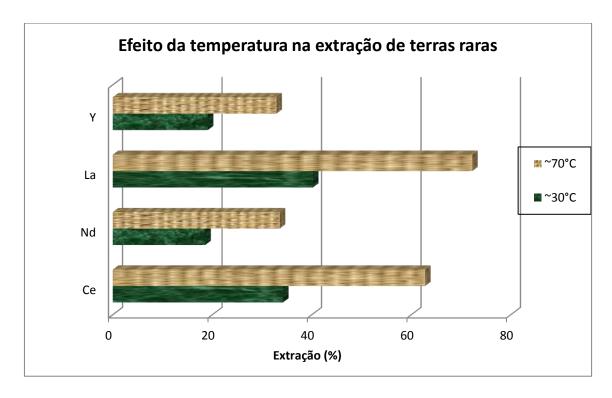


Figura 1 – Efeito da temperatura na extração dos elementos de terras raras.

Em cada teste realizado foram utilizadas 150 g de amostra. Os testes foram realizados com utilização de um agitador mecânico, revestido com material polimérico para evitar ataque do material e a possível contaminação da lixiviação resultante, em um béquer com capacidade para 2 L. Testes preliminares demonstram que a proporção mais adequada entre a fase sólida e a fase liquida é de 1:10, sendo esta proporção utilizada nos demais testes de lixiviação deste trabalho. Ambas as etapas de lixiviação foram conduzidas durante 5 horas. Inicialmente foi avaliado o efeito da temperatura sob a extração dos elementos de interesse. Dessa forma foram efetuados ensaios a temperatura ambiente (~30°C) e a temperaturas moderadas (~70°C), os dados obtidos são apresentados na Figura 1.

Os dados obtidos nessa etapa experimental demonstraram que a temperatura é um parâmetro que contribui para a extração dos elementos de terras raras avaliados neste trabalho. A extração do elemento La, por exemplo, elevou-se de 40% (~30 °C) para valores em torno de 70% (~70°C).

4.2 Lixiviação ácida com pré-tratamento alcalino

A partir dos dados preliminares obtidos, e com o objetivo de elevar a extração dos elementos de terras raras, ensaios utilizando condições mais rigorosas de temperatura foram avaliados (Tabela 4).

Tabela 4 – Testes de extração de terras raras utilizando temperatura de lixiviação em torno de 95 °C.

Testes	G	Н	I	_
Condições	NaOH: 5h	NaOH: 5h	NaOH: 5h	<u> </u>
	HCl: 5h	HCl: 5h	HCl: 5h	
Temperatura	~95°C	~95°C	~95°C	
		Extração (%)		Extração média (%)
Cério (Ce)	98,885	97,035	97,956	97,959
Neodímio (Nd)	67,690	73,670	65,680	69,013
Lantânio (La)	92,283	95,803	98,010	95,365
Ítrio (Y)	44,602	42,846	44,903	44,117

Nesses ensaios a temperatura foi mantida em torno de 95°C. Os resultados obtidos confirmaram a tendência inicial, ou seja, a influência da temperatura utilizada nas etapas de lixiviação como um fator de favorecimento à liberação das espécies metálicas para a lixívia. Nesses ensaios, valores médios de extração, superiores a 95%, foram obtidos para os elementos Cério e Lantânio.

5. CONCLUSÃO

Os experimentos apresentados neste estudo demonstraram que as terras raras contidas na amostra avaliada neste trabalho podem ser extraídas através de um processo hidrometalúrgico que envolve duas etapas: lixiviação alcalina seguida de lixiviação ácida. A lixiviação alcalina possibilitou a liberação dos elementos das terras raras da matriz com a formação de fosfato de sódio com formação de hidróxidos insolúveis desses elementos, os quais são solubilizados na etapa posterior.

A rota apresentada neste trabalho apresenta uma vantagem adicional: a formação de fosfato de sódio como subproduto de valor agregado, o qual é gerado na primeira etapa de lixiviação, de acordo com a reação abaixo:

$$TrPO_4 + 3NaOH \rightarrow Tr(OH)_3 + Na_3PO_4$$

Além das terras raras e da formação de fosfato de sódio, a amostra apresenta teores de tório e urânio, os quais podem ser extraídos em um processo específico, agregando valor à monazita explorada.

6. PROXIMOS ESTUDOS

Futuramente serão verificados parâmetros/condições que possam elevar a concentração dos elementos cuja extração média obtida neste trabalho foi inferior a 70% (Nd) e 45% (Y).

7. AGRADECIMENTOS

Agradeço ao Centro de Tecnologia Mineral (CETEM) pela infra-estrutura, ao Programa Institucional de Bolsa de Iniciação Científica – PIBIC/CNPq pela concessão da bolsa e aos doutores Luis Sobral e Fábio Henrique pela confiança na realização deste trabalho.

8. REFERÊNCIAS BIBLIOGRÁFICAS

- HENDERSON, P. The rare earth elements: introduction and review. The Mineral Society Series 7: Rare Earth Minerals – Chemistry, origin and ore deposits. Edited by Adrian P. Jones, Frances Wall and C. Terry Williams. Chapman & All, First Edition, 1996.
- LOUREIRO, F. E.V. Terras-Raras no Brasil, depósitos, recursos identificados, reservas. Rio de Janeiro, Brasil, 1994. 4 p.
- ROSENTAL, S. Terras Raras. Comunicação Técnica CT2008-188-00. CETEM/CNPq, Rio de Janeiro, 2008.
- ZINI, J. Usos das cromatografias de extração e de troca iônica na separação de tório e terras raras de um resíduo gerado na unidade de purificação de tório. Aplicação das terras raras como catalisadores na geração de hidrogênio. Tese de Doutorado. Instituto de Pesquisas Energética e Nucleares/Universidade de São Paulo (USP). São Paulo, 2010.