APLICAÇÃO DA SEPARAÇÃO MAGNÉTICA A SECO NO BENEFICIAMENTO DE UM MINÉRIO FOSFÁTICO

Sabrina Souto Ferreira

Bolsista de Inic. Científica, Eng. Química, UERJ

Marisa Bezerra de Mello Monte

Orientadora, Eng.ª Química, D.Sc.

Fernando Freitas Lins

Co-orientador, Eng.º Metalúrgico, D.Sc.

RFSUMO

Neste trabalho é apresentado um estudo exploratório de separação magnética a seco como alternativa de beneficiamento do minério fosfático - tipo apatítico - de Angico dos Dias/Caracol (BA/PI), em virtude da escassez de água na região. Foram

determinadas as melhores condições do processo de separação magnética aplicado às frações mais ricas do minério e obteve-se um pré-concentrado fosfático com teor de P_2O_5 superior a 35%

1. INTRODUÇÃO

A jazida de fosfato de Angico dos Dias/Caracol (BA/PI) apresenta seis tipos de minérios fosfatados, são eles: apatítico, apatítico recristalizado, aluminoso pobre, aluminoso rico, magnesiano pobre e carbonatítico (Kahn et al., 1990). Pela mineralogia e composição química verificou-se que os tipos de maior interesse econômico são o apatítico recristalizado e o apatítico, sendo este último o objeto de estudo desse trabalho. Este minério fosfático denominado apatítico, constituído, essencialmente, por apatita, oxi-hidróxidos de ferro e micáceos subordinados (Kahn et al., 1990), apresenta baixos teores de P_2O_5 (média que varia entre 17,7 a 21,3 %), e por essa razão é necessária a aplicação de processos de concentração para adequação do minério às especificações requeridas pelas indústrias de ácido fosfórico.

A flotação é geralmente empregada como tecnologia de concentração de minérios fosfáticos. Porém, como no minério estudado observa-se uma associação de apatita com oxi-hidróxidos de ferro (Neumann e Alcover, 1999) e, além disso, um dos objetivos desse trabalho é o uso racional de água, optou-se pela separação magnética a seco.

2. OBJETIVO

O presente trabalho tem por objetivo o desenvolvimento de um processo de concentração a seco para o minério fosfático - apatítico, baseando-se no fato da escassez de água na região e visando o máximo aproveitamento de apatita.

3. MATERIAIS F MÉTODOS

A preparação da amostra iniciou-se com cominuição em britador de mandíbulas - obtendo-se um produto com granulometria abaixo de 2,36 mm (8 malhas), seguida de homogeneização e quarteamento em sub-amostras de 1 kg. Estas sub-amostras foram utilizadas em análises granulométrica e química, bem como nos ensaios de concentração.

Na realização dos experimentos, foram utilizados os seguintes equipamentos: série de peneiras Tyler; peneirador Rotap - fabricante Luik & Kleiner; separador eletro-magnético de disco a seco - fabricante Stearns, modelo D e separador magnético de rolo a seco (ímā permanente de terras raras) - fabricante Eriez, modelo RE 5-1, série 8851.

Os ensaios de separação magnética foram realizados com a faixa granulométrica -1,19 +0,074 mm (-14 +200 malhas), variando-se a intensidade de campo magnético. Para tal finalidade, a amostra foi processada em separador magnético de disco (campos magnéticos de 2.000 e 7.000 Gauss) e de rolo (campo magnético máximo na superfície de 21.000 Gauss). Posteriormente, a mesma amostra foi, previamente, submetida à atrição a seco (célula de atrição) e processada no separador magnético de rolo.

4. RESULTADOS E DISCUSSÃO

A Figura 1 apresenta a distribuição de teores de P_2O_5 , Fe_2O_3 e Al_2O_3 em função da granulometria do minério. A análise da Figura 1 revela a possibilidade de descarte das frações mais finas, nas quais as distribuições dos teores de Fe_2O_3 e Al_2O_3 são significativas, enquanto representam menos de 10% do fosfato contido. Além disso, conforme pode ser visto na Figura 2, nessas frações finas, os teores de P_2O_5 são baixos e os teores de Fe_2O_3 e Al_2O_3 , elevados. As frações acima de 0,105 e 0,074 mm orrespondem a 82,7 e 85,9% do fosfato contido na amostra original, respectivamente.

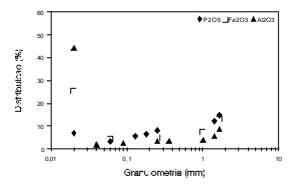


Figura 1 - Distribuição de P₂O₅, Fe₂O₃ e Al₂O₃ em função da granulometria.

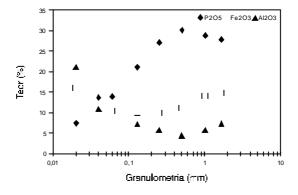


Figura 2 - Teores de P₂O₅, Fe₂O₃ e Al₂O₃ em função da granulometria.

Com base nesses dados, e após alguns ensaios exploratórios, o material foi classificado na faixa granulométrica -1,19 +0,074 mm e utilizado nos ensaios de separação magnética. Os resultados desses ensaios de separação magnética a seco em baixa e média intensidade (separador de disco) e alta intensidade de campo magnético (separador de rolo) estão apresentados nas Figuras 3 e 4. Na Figura 3, observa-se, no produto não magnético, um aumento considerável nos teores de P_2O_5 conforme o aumento da intensidade de campo magnético. Da mesma forma, verifica-se, a diminuição dos teores de Fe_2O_3 e Al_2O_3 quando a amostra é submetida a intensidades de campo crescentes.

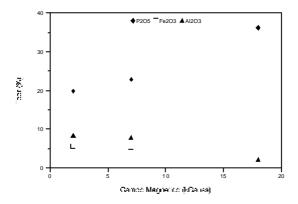


Figura 3 - Teores de P₂O₅, Fe₂O₃ e Al₂O₃ em função do campo magnético no produto não magnético da fração -1,19 +0,074 mm.

A Figura 4 apresenta a distribuição de Fe_2O_3 , Al_2O_3 e P_2O_5 no rejeito magnético. Cerca de 92% de Fe_2O_3 e 88% de Al_2O_3 foram rejeitados quando o minério foi processado em campo magnético de alta intensidade. Por outro lado, obteve-se um aumento da perda de P_2O_5 no rejeito magnético, conforme o aumento da intensidade de campo magnético.

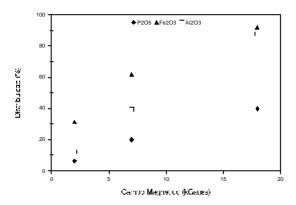


Figura 4 - Efeito da intensidade de campo magnético na distribuição de P_2O_5 , Fe_2O_3 e Al_2O_3 no rejeito magnético da fração -1,19 +0,074 mm.

A aplicação de alta intensidade de campo magnético resultou em um teor P_2O_5 no produto não magnético de 36,2% (Figura 3). Apesar da obtenção desse teor elevado de P_2O_5 , observou-se uma perda considerável de fosfato (39,8%) no produto magnético (Figura 4).

Esta perda de fosfato pode ser devido à presença de oxi-hidróxidos de ferro que recobrem superficialmente as partículas de apatita (Neumann e Alcover, 1999), conferindo-lhes uma maior susceptibilidade magnética.

Esse problema poderia ser minimizado com a atrição a seco do material em moinho de barras visando a remoção de partículas de oxi-hidróxidos de ferro aderidas às de apatita.

Os resultados do ensaio de separação magnética com a amostra submetida previamente à atrição estão relacionados na Tabela 1. Conforme pode ser verificado, a recuperação de P_2O_5 no produto não magnético foi de 60,08%, ou seja, a atrição não surtiu o efeito desejado quanto a recuperação de fosfato. Este concentrado apresentou uma melhoria no teor de P_2O_5 (37,1%). As demais análises foram: 1,58% Fe_2O_3 , 37,75% CaO, 1,84% Al_2O_3 , 0,04% MgO e 19,17% SiO_2 .

Com as condições deste último ensaio e seus resultados (teor de P_2O_5 : 37,1%; relação CaO/P_2O_5 : 1,01%; relação R_2O_3/P_2O_5 : 0,09% e relação MgO/P_2O_5 : 0,001%), obtém-se um produto com as especificações adequadas para a produção de ácido fosfórico.

Tabela 1 - Resultados dos ensaios de separação magnética a seco de alta intensidade, efetuados com a fração -1,19 +0,074 mm após atricão.

	Peso (%)	P ₂ O ₅ (%)		CaO (%)		Fe ₂ O ₃ (%)	
		Teor	Dist.	Teor	Dist.	Teor	Dist.
Alim.	100	22,38	100	20,66	100	11,77	100
Mag.	60,11	13,43	36,08	10,27	29,88	18,23	93,09
Nmag.	36,25	37,09	60,08	37,75	66,23	1,58	4,87
Misto	3,64	23,60	3,84	22,06	3,89	6,61	2,04

	MgO (%)		SiO ₂ (%)		Al ₂ O ₃ (%)	
	Teor	Dist.	Teor	Dist.	Teor	Dist.
Alim.	0,22	100	27,53	100	9,72	100
Mag.	0,33	90,56	32,29	70,52	14,57	90,10
Nmag.	0,04	6,62	19,17	25,25	1,84	6,86
Misto	0,17	2,82	32,05	4,23	8,11	3,04

Um fluxograma conceitual do processo de beneficiamento é apresentado na Figura 5, tendo em vista todas as características do minério apatítico. Uma análise geral dos resultados revela, ainda que, se o minério fosse classificado em 0,074 mm, cerca de 30% da massa seria descartada e 86% do fosfato seria concentrado em apenas 70% da massa. Neste caso, a moagem com aeroclassificação poderia ser utilizada. Para atender às especificações do produto para fabricação de ácido fosfórico, seria obtida uma recuperação global de 52% de P_2O_5 contido no minério ("run of mine") em 28% da massa original. Em trabalhos futuros deverão ser estudadas alternativas para recuperação do fosfato contido no produto magnético.

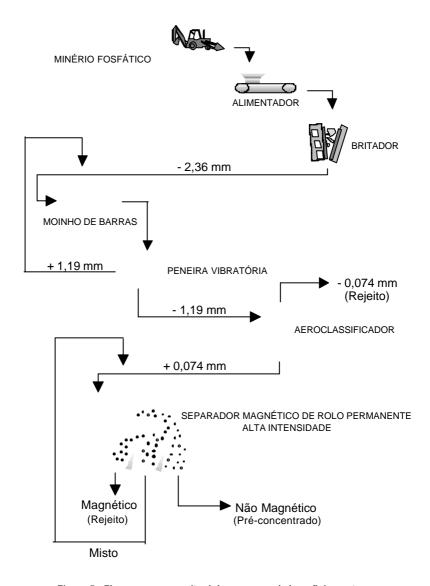


Figura 5 - Fluxograma conceitual do processo de beneficiamento

5. AGRADECIMENTOS

Agradecemos ao Eng.º Mauro Yamamoto do Laboratório Nomos pela utilização do separador magnético de rolo (ímã permanente de terras raras).

6. CONCLUSÕES

Nos ensaios de separação magnética a seco, realizados em baixa e média intensidade de campo magnético, concluiu-se que o aumento da intensidade de campo magnético de 2.000 para 7.000 Gauss resultou em aumento da remoção de ferro, bem como dos teores de P_2O_5 no concentrado não magnético, 19,8 e 22,9%, respectivamente. No entanto, o produto assim obtido não era ainda adequado a um concentrado destinado à produção de ácido fosfórico. Tal fato levou ao estudo de separação magnética de alta intensidade visando a obtenção de um concentrado apropriado (Takata et al., 1988).

Melhores resultados foram obtidos nos ensaios de separação magnética de alta intensidade a seco usando um separador de rolo com ímã permanente de terras raras apresentando boa seletividade para a faixa granulométrica -1,19 +0,074 mm (14 +200 malhas). A atrição prévia proporcionou apenas uma melhoria no teor de P₂O₅ do concentrado.

BIBLIOGRAFIA

- KAHN, H., CASSOLA, M.S., OBA, C..A.I., LIBERAL, G.S., RIFFEL, B.F. (1990).
 "Caracterização tecnológica do minério residual de Angico dos Dias BA ", XIV Encontro Nacional de Tratamento de Minérios e Hidrometalurgia, vol. I.
- TAKATA, L.A., SACHS,P.F.T., ASSIS, J.M.N. (1988). "Aplicação da separação magnética de alta intensidade na purificação de concentrados apatíticos da Arafértil", XIII Encontro Nacional de Tratamento de Minérios e Hidrometalurgia, vol. II.
- Neumann, R., Alcover, A.N. (1999). "Caracterização mineralógica e tecnológica do minério fosfático de Angico dos Dias/Caracol (BA/PI)". Relatório técnico de Projeto PADCT "1ª fase" (RT-09/99).